您好!欢迎来深圳市日科实业
服务热线: 86-755-82722511
购物车图片 购物车 ( )

《日科干货》​MLCC电容温度最高能达到多以及电容特性和注意事项

日期: 2018-05-21
浏览次数: 12

MLCC结构和工作原理

MLCC电容结构较简单,由陶瓷介质、内电极金属层和外电极三层构成。

MLCC的电容量公式可以如下表示:

C:电容量,以F(法拉)为单位,而MLCC之电容值以PF,nF,和?F为主。

ε:电极间绝缘物的介质常数,单位为法拉/公尺。

K:介电常数(依陶瓷种类而不同)

A:导电面积(产品大小及印刷面积而不同)

D:介电层厚度(薄带厚度)

n:层数(堆栈层数)

我们都知道,电容就是可以储存电量的容器,它基本原理就是使用两片互相平行但未接触在一起的金属,中间以空气或是其它材料作为为绝缘物,将两片金属的一片接在电池的正极,另一片接在负极,金属片上就能储存电荷。相比常见的电解电容,MLCC(多层陶瓷电容器)因为可以作成薄片(n堆栈层数很多),因此在同样的体积下MLCC可以大大提升其电容器的容量。

mlcc电容温度最高能达到多少

多层陶瓷电容器(MLCC)一般没有什么耐温的说法,只要注意到使用温度就可以了,一类瓷和二类瓷的使用温度在-55~+125度。

汽车级径向引线的多层陶瓷片式电容器(MLCC)的工作温度范围提高到+200℃,达到II类陶瓷通孔器件的业内最高温度。

MLCC被认定能在-55℃~+200℃温度范围内工作500小时,在+175℃温度下则没有时间限制。器件具有良好的高温性能,容量从100pF到1μF,电容公差保持在严格的±5%。

I类和II类陶瓷MLCC使用电容变化为±30ppm/K的非常稳定的C0G电介质和-55℃~+175℃温度范围TCC为+22%/-56%的X0U电介质。X0U电介质还达到了X7R的规格,-55℃~+125℃范围内的电容变化为±15%,达到X9V的规格,-55℃~+200℃范围的电容变化为+22%/-82%。为了直接焊在引线框架上,或用塑料注模,电容器使用间距2.5mm和5.0mm的直腿引线或弯引线。引线直径0.5mm或0.6mm,用100%镀锡的覆铜钢制造。

电容器不含铅,符合RoHS,无卤素,采用耐火环氧树脂制造的涂层符合UL 94 V-0。

MLCC电容特性及注意事项

MLCC厂家在生产过程中,如果工艺不好,就有可能会有隐患。比如介质空洞、烧结纹裂、分层等都会带来隐患。这点只能通过筛选优秀的供应商来保证(后面还会谈到供应商选择问题)。

另外就是陶瓷本身的热脆性和机械应力脆性的故有可靠性,导致电子设备厂在使用MLCC时,使用不当也容易失效。

MLCC现在做到几百层甚至上千层了,每层是微米级的厚度。所以稍微有点形变就容易使其产生裂纹。另外同样材质、尺寸和耐压下的MLCC,容量越高,层数就越多,每层也越薄,于是越容易断裂。另外一个方面是,相同材质、容量和耐压时,尺寸小的电容要求每层介质更薄,导致更容易断裂。裂纹的危害是漏电,严重时引起内部层间错位短路等安全问题。而且裂纹有一个很麻烦的问题是,有时比较隐蔽,在电子设备出厂检验时可能发现不了,到了客户端才正式暴露出来。所以防止MLCC产生裂纹意义重大。

MLCC受到温度冲击时,容易从焊端开始产生裂纹。在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力。这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样。另外,在MLCC焊接过后的冷却过程中,MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹。要避免这个问题,回流焊时需要有良好的焊接温度曲线。如果不用回流焊而用波峰焊,那么这种失效会大大增加。MLCC更是要避免用烙铁手工焊接的工艺。然而事情总是没有那么理想。烙铁手工焊接有时也不可避免。比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接。无法避免地要手工焊接MLCC时,就要非常重视焊接工艺。首先必须告知工艺和生产人员电容热失效问题,让其思想上高度重视这个问题。其次,必须由专门的熟练工人焊接。还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量,等等。最好的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头。

机械应力也容易引起MLCC产生裂纹。由于电容是长方形的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题。于是,排板时要考虑受力方向。比如分板时的变形方向于电容的方向的关系。在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容。比如PCB定位铆接、单板测试时测试点机械接触等等都会产生形变。另外半成品PCB板不能直接叠放,等等。


News / 推荐新闻 More
2018 - 02 - 26
2018年2月26日,正月十一,春节的气氛还未消散,新的征程已拉开序幕!一大早,日科董事长叶少宏先生,亲自为家人们派发了“开工红包”。祝日科家人们大吉大利,狗年旺!旺!旺!愿日科小伙们全力以赴向前冲,奋力决战开门红!开工大吉新的一年,新的征程!新时代是奋斗者的时代!2018年,撸起袖子加油干!!
2018 - 06 - 22
压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示。一)压敏电阻器的种类 压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。 1.按结构分类  压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。 结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。 2.按使用材料分类  压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。 3.按其伏安特性分类  压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。(二)压敏电阻...
2018 - 06 - 21
总的来说,场效应晶体管可区分为耗尽型和增强型两种。耗尽型场效应晶体管(D-FET)就是在0栅偏压时存在沟道、能够导电的FET;增强型场效应晶体管(E-FET)就是在0栅偏压时不存在沟道、不能够导电的FET。  这两种类型的FET各有其特点和用途。一般,增强型FET在高速、低功耗电路中很有使用价值;并且这种器件在工作时,它的栅偏电压的极性与漏极电压的相同,则在电路设计中较为方便。  (1)MOSFET:  对于Si半导体器件,由于Si/SiO2界面上电荷(多半是正电荷——Na+沾污所致)的影响,使得n型半导体表面容易产生积累层,而p型半导体表面容易反型(即出现表面反型层),所以比较容易制造出p沟道的增强型MOSFET(E-MOSFET),而较难以制作出n沟道的E-MOSFET。正因为如此,故在早期工艺水平条件下,常常制作的是p沟道的E-MOSFET。  当然,随着工艺技术水平的提高,现在已经...
2018 - 06 - 19
随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。三极管原理的关键是要说明以下三点。1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN结单向导电性相矛盾。2、放大状态下集电极电流Ic,为什么会只受控于电流Ib而与电压无关;即:Ic与Ib之间为什么存在着一个固定的放大倍数关系。虽然基区较薄,但只要Ib为零,则Ic即为零。3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic的产生。很多教科书对于这部分内容,在讲解方法上处理得并不适当。特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。即使专业性 很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲...
联系我们 contacts
电话:86-755-82722511
传真:86-755-82722599
网址:http://www.rikeshiye.com
网店:http://rikeshiye.1688.com
地址:广东省深圳市南山区西丽平山民企科技园7栋3楼
栏目导航 navigation
分享到 share
快速咨询 consulting
  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • E-mail:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
     
Copyright ©2017 深圳市日科实业有限公司
犀牛云提供企业云服务